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Abstract

Purpose – The aim of this paper is to formulate and analyze thermophoresis effects on mixed
convection heat and mass transfer from vertical surfaces embedded in a saturated porous media with
variable wall temperature and concentration.

Design/methodology/approach – The governing partial differential equations (continuity,
momentum, energy, and mass transfer) are written for the vertical surface with variable temperature
and mass concentration. Then they are transformed using a set of non-similarity parameters into
dimensionless form and solved using Keller-box method.

Findings – Many results are obtained and a representative set is displaced graphically to illustrate the
influence of the various physical parameters. It is found that the increasing of thermophoresis constant or
temperature differences enhances heat transfer rates from vertical surfaces and increases wall
thermophoresis velocities; this is due to favorable temperature gradients or buoyancy forces. It is also
found that the effect of thermophoresis phenomena is more pronounced near pure natural convection heat
transfer limit, because this phenomenon is directly temperature gradient- or buoyancy forces-dependent.

Research limitations/implications – The predicted results are restricted only to porous media
with small pores due to the adoption of Darcy law as a force balance.

Originality/value – The paper explains the different effect of thermophoresis on forced, natural and
mixed convection heat, and mass transfer problems. It is one of the first works that formulates and
describes this phenomenon in a porous media. The results of this research are important for scientific
researches and design engineers.
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Nomenclature
a ¼ constant defined in equation (6)
b ¼ constant defined in equation (6)
C ¼ fluid concentration
Cf ¼ local skin friction factor
cp ¼ specific heat capacity
D ¼ Brownian diffusion coefficient
f ¼ dimensionless stream function

g ¼ gravitational acceleration
h ¼ local heat transfer coefficient
K ¼ permeability
k ¼ thermophoresis coefficient
Le ¼ Lewis number, am/D
m ¼ constant defined in equation (6)
Mw(x) ¼ local surface mass flux
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N ¼ Buoyancy ratio, ½bCðCw 2 C1Þ=
bTðTw 2 T1Þ�

n ¼ constant defined in equation (6)
Nt ¼ dimensionless temperature ratio,

T1=½TwðxÞ2 T1�
Nc ¼ dimensionless concentration ratio,

C1=½CwðxÞ2 C1�
Nux ¼ local Nusselt number, hx/k
P ¼ pressure
Pex ¼ local Peclet number, u1x/a
Pr ¼ Prandtl number, y/a
qw(x) ¼ local surface heat flux
Rax ¼ local Rayleigh number,

KgbðTwðxÞ2 T1Þx=ya
Shx ¼ local Sherwood number,

MwðxÞx=DðCwðxÞ2 C1Þ
T ¼ temperature
u, v ¼ Darcian velocity components in x-

and y- directions
vt ¼ thermophoresis velocity
vtw ¼ thermophoresis velocity at wall
Vt ¼ dimensionless thermophoresis

velocity, vt x=am

Vtw ¼ dimensionless thermophoresis
velocity at wall

x, y ¼ axial and normal coordinates

Greek symbols
am ¼ effective thermal diffusivity of the

porous medium
bT ¼ coefficient of thermal expansion,

ð21=rÞð›r=›TÞP
bC ¼ coefficient of concentration

expansion, ð21=rÞð›r=›CÞP
6 ¼ non-similarity parameter,

1=½1 þ ðRax=PexÞ
1=2�

h ¼ pseudo-similarity variable
u ¼ dimensionless temperature
f ¼ dimensionless concentration
m ¼ dynamic viscosity
y ¼ kinematic viscosity
r ¼ fluid density
tw ¼ local wall shear stress
c ¼ dimensional stream

function

Subscripts
w ¼ surface conditions
1 ¼ free stream condition
t ¼ thermophoresis effects

1. Introduction
Thermophoresis is a phenomenon, which causes small particles to be driven away from
a hot surface and toward a cold one. Small particles, such as dust, when suspended in a
gas temperature gradient, experience a force in the direction opposite to the temperature
gradient. This phenomenon has many practical applications in removing small particles
from gas streams, in determining exhaust gas particles trajectories from combustion
devices, and in studding the particulate material deposition on turbine blades. It has
been also shown that thermophoresis is the dominant mass transfer mechanism in the
modified chemical vapor deposition process used in the fabrication of optical fiber
performance. Also, it is important in view of its relevance to postulated accidents by
radioactive particle deposition in nuclear reactors. In many industries, the composition
of processing gases may contain any of an unlimited range of particle, liquid, or gaseous
contaminants and may be influenced by uncontrolled factors of temperature and
humidity. When such an impure gas is bounded by a solid surface, a boundary layer will
develop, and energy and momentum transfer gives rise to temperature and velocity
gradients. Mass transfer caused by gravitation, molecular diffusion, eddy diffusion, and
inertial impact results in deposition of the suspended components onto the surface. In the
application of pigments or chemical coating of metals, or removal of particles from a gas
stream by filtration, there can be distinct advantages in expositing deposition
mechanism to improve efficiency.

Goren (1977) studied the role of thermophoresis of a viscous and incompressible
fluid, the classical problem of flow over a flat plate is used to calculate deposition rates
and it is found that the substantial changes in surface deposition can be obtained by

Thermophoresis
particle

deposition

203



increasing the difference between the surface and free stream temperatures. Gokoglu
and Rosner (1986) and Park and Rosner (1989) obtained a set of similarity solutions for
the 2D laminar boundary layers and stagnation point flows, respectively. Chiou (1991)
obtained the similarity solutions for the problem of a continuously moving surface in a
stationary incompressible fluid, including the combined effects of convection,
diffusion, wall velocity and thermophoresis. Garg and Jayaraj (1998) discussed the
thermophoresis of small particles in forced convection laminar flow over inclined
plates; Epstein et al. (1985) have studied the thermophoresis transport of small particles
through a free convection boundary layer adjacent to a cold, vertical deposition surface
in a viscous and incompressible fluid. Chiou (1998) has considered the particle
deposition from natural convection boundary layer flow onto an isothermal vertical
cylinder. Convective flows in porous media have been extensively investigated during
the last several decades, due to many practical applications, which can be modeled or
approximated as transport phenomena in porous media. Comprehensive literature
surveys concerning the subject of porous media can be found in the most recent books
by Ingham and Pop (2002), Nield and Bejan (1999), and Pop and Ingham (2001).

Despite the practical importance of thermophoresis there is to our best knowledge,
almost one work devoted to the effect of thermophoresis on pure natural convection in a
porous medium by Chamkha and Pop (2004), consideration in this work is given to the
similarity solutions with approximation of thermophoresis parameter in derivation of
governing equations. Therefore, consideration in this work is given to the
thermophoresis effects on forced, natural and mixed convection heat, and mass
transfer problems from vertical surfaces with variable surfaces temperatures embedded
in saturated porous medium (Figure 1). The governing partial differential equations are
transformed into non-similar form and then solved using Box method as described by
Cebeci and Bradshaw (1984). Numerical results for the velocity, temperature, and

Figure 1.
Mixed convection heat and
mass transfer over vertical
flat plate embedded in
fluid saturated porous
medium
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concentration profiles as well as the thermophoresis velocity, local coefficient of friction,
and local Nusselt number under the effect of different dimensionless groups are
presented.

2. Mathematical formulation
Consider mixed convection from an impermeable vertical surface embedded in
saturated porous medium. The analysis is carried out for the power-law variation of
the wall temperature TwðxÞ ¼ T1 þ axn and the power law variation of the wall
concentration CwðxÞ ¼ C1 þ bxm, where a and b are constants and m and n are the
exponents. The x coordinate is measured from the leading edge of the plate and the y
coordinate is measured normal to the plate. The gravitational acceleration g is acting
downward in the direction opposite to the x coordinate. The Darcy model which is
valid under the conditions of low velocities and small pores of porous matrix is used in
the analysis. Also the properties of the fluid are assumed to be constant and the porous
medium is treated as isotropic. Allowing for both Brownian motion of particles and
thermophoresis transport, the governing equations can be written as (Nield and Bejan,
1999; Chiou, 1998):

›u

›x
þ

›v

›y
¼ 0 ð1Þ

u ¼
Kg

y
ðbTðT 2 T1Þ þ bcðC 2 C1ÞÞ ð2Þ

u
›T

›x
þ v

›T

›y
¼ am

›2T

›y 2
ð3Þ

u
›C

›x
þ v

›C

›y
þ

›ðCvtÞ

›y
¼ D

›2C

›y 2
ð4Þ

The first and second terms on the left side of the mass concentration equation is the
convective mass flux, while the third term is the thermophoresis mass flux. The u and v
are the Darcian velocity components in x- and y- directions, respectively, T is the fluid
temperature, C is the fluid concentration, K is the permeability of the porous medium, y
is the kinematic viscosity, D is the Brownian diffusion coefficient, am is the effective
thermal diffusivity of the porous medium, and bT and bc are the thermal expansion
coefficient of temperature and concentration, respectively. The effect of
thermophoresis is usually prescribed by means of the average velocity, which a
particle will acquire when exposed to a temperature gradient. Under boundary layer
approximations the temperature gradient in the y-direction is very much larger
than in the x-direction, and therefore only the thermophoresis velocity in the y-direction
is considered. In consequence the thermophoresis velocity vt can be expressed in
the form:

vt ¼ 2k
y

T

›T

›y
ð5Þ

where k is the thermophoresis coefficient. The boundary conditions that describe the
governing equations (1)-(5) are:
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v ¼ 0; TwðxÞ ¼ T1 þ axn; CwðxÞ ¼ C1 þ bxm at y ¼ 0

u ¼ u1; T ¼ T1; C ¼ C1 at y!1:
ð6Þ

Note that n ¼ 0 corresponds to the case of constant wall temperature and m ¼ 0
corresponds to the case of constant wall concentration, while the case of m ¼ n ¼ 1/3
corresponds to the wall with constant heat and mass fluxes.

Equations (1)-(6) can be transformed from the (x, y) coordinates to the dimensionless
coordinate (6, h) by introducing the following non-dimensional variables:

h ¼
y

x
Pe1=2

x 621; 6 ¼
1

½1 þ ðRax=PexÞ
1=2�

c ¼ amPe
1=2
x f ð6;hÞ621;

uð6;hÞ ¼
T 2 T1

TwðxÞ2 T1

; fð6;hÞ ¼
C 2 C1

CwðxÞ2 C1

:

ð7Þ

In the equations above, the stream function c satisfied the continuity equation (1) with
u ¼ ›c=›y and v ¼ 2›c=›x. Finally, one can obtain the following system of
dimensionless equations:

f 00 ¼ ð1 2 6Þ2ðu 0 þ Nf0Þ ð8Þ

u 00 2 nf 0uþ
1

2
½1 þ nð1 2 6Þ� fu 0 ¼

n

2
6ð1 2 6Þ u 0 ›f

›6
2 f 0

›u

›6

� �
ð9Þ

1

Le
f002mf 0fþ

1

2
½1þmð12 6Þ� ff0 þ

kPr

uþN t
½u 0f0 þ ðfþN cÞu

002
fþN c

uþN t
u 02�

¼
n

2
6ð12 6Þ f0 ›f

›6
2 f 0

›f

›6

� � ð10Þ

With the corresponding boundary conditions:

f ð6; 0Þ þ 2n6
›f

›6
ð6; 0Þ ¼ 0 or f ð6; 0Þ ¼ 0

uð6; 0Þ ¼ 1;fð6; 0Þ ¼ 1; f 0ð6;1Þ ¼ 6 2; uð6;1Þ ¼ 0;fð6; 0Þ ¼ 0

ð11Þ

where, Pex ¼ u1x=a, Rax ¼ gb½TwðxÞ2 T1�Kx=ya, Pr ¼ y=am, Le ¼ am=D,
N ¼ bcðCwðxÞ2 C1Þ=bTðTwðxÞ2 T1Þ, N t ¼ T1=½TwðxÞ2 T1�, N c ¼ C1=½CwðxÞ
2C1� and the primes denotes partial differentiations with respect to h. Note that for
the case of 6 ¼ 0 and N c ¼ 0, the governing equations (8)-(10) with the corresponding
boundary conditions, equation (11) are reduced to those obtained by Chamkha and Pop
(2004) for the case of pure free convection, where a similarity solutions are obtained.

Some of the physical quantities of practical interest include the velocity components u
and v in the x- and y- directions, respectively. The wall shear stress tw, defined as
tw ¼ mð›u=›yÞy¼0, the local Nusselt numberNux ¼ hx=k, the local Sherwood numberShx
and the dimensionless wall thermophoresis deposition velocity Vtw. They are given by:

u ¼ u16
2f 0ð6;hÞ ð12Þ
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v ¼ 2ðam=xÞ
1

2
f 2

1

2
h f 0 þ a6

›f

›6

� �
ð13Þ

twðx
2=mamÞ Pe1=2

x þ Ra1=2
x

� �
¼ f 00ð6; 0Þ ð14Þ

Nux Pe1=2
x þ Ra1=2

x

� �21

¼ 2u 0ð6; 0Þ ð15Þ

Shx Pe1=2
x þ Ra1=2

x

� �21

¼ 2f0ð6; 0Þ ð16Þ

and:

V tw Pe1=2
x þ Ra1=2

x

� �21

¼ 2
kPr

1 þ N t
u 0ð6; 0Þ ð17Þ

Notice also that for the case of k ¼ 0 (absence of thermophoresis), 6 ¼ 0 (pure free
convection) the equations are reduced to those of Lai and Kulacki (1991).

3. Numerical solution
The partial differential equations (8)-(10) under boundary conditions (11) are nonlinear,
coupled partial differential equations which posses no closed form solution. Therefore,
they must be solved numerically by using an implicit iterative tridiagonal
finite-difference method as described by Cebeci and Bradshaw (1984) and Keller
(1988). In this method, any quantity g at point ð6n;hjÞ is written as gnj and quantities at
the midpoints of grid segments are approximated to second order as:

g
n21=2
j ¼

1

2
gnj þ gn21

j

� �
; gnj21=2 ¼

1

2
gnj þ gnj21

� �
ð18Þ

and the derivatives are approximated to second order as:

›g

›6

� �n21=2

j

¼ D621 gnj 2 gn21
j

� �
; g 0
� �n

j21=2
¼ Dh21 gnj 2 gnj21

� �
ð19Þ

where g is any dependent variable and n and j are the node locations along the 6 and h
directions, respectively. First the second-order partial differential equations are
converted into a first order by substitutions f 0 ¼ s; and u0 ¼ v, the difference
equations that are to approximate the previous equations are obtained by averaging
about the midpoint ð6n;hj21=2Þ, and those to approximate the resulting equations by
averaging about ð6n21=2;hj21=2Þ. At the first line of 6 ¼ 0, a system of algebraic
equations is obtained and is solved iteratively. The same process is repeated for the
next value of 6 and the problem is solved line by line until the desired 6 ¼ 1 value is
reached. A convergence criterion based on the relative difference between the current
and previous iterations is employed. When this difference reaches 1025, the solution is
assumed to have converged and the iterative process is terminated.

The effect of the grid size Dh and D6 and the edge of the boundary layer h1 on the
solution had been examined. The results presented here are independent of the grid
size and the h1 at least up to the 5th decimal point. Note that the right-hand terms in
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both the momentum, energy and concentration equations, reflect the effect of the
nonsimilarity on the mixed convection heat transfer problem under consideration.

The accuracy of the selected method was tested by comparing the results with those
of the classical mixed-convection problem over a vertical isothermal impermeable plate
(Hsieh et al., 1993). Table I shows a comparison between the Nusselt numbers at
different mixed convection parameter, 6 obtained by the presented numerical method
and that of the mentioned reference for the case of absence of mass transfer
and thermophoresis deposition effects. It is seen that the present results are in a good
agreement. This favorable comparison lends confidence in the numerical results to be
reported in the next section.

4. Results and discussion
The thermophoresis is a phenomenon, which causes small particles to be driven away
from a hot surface and to a cold one. The effect of thermophoresis is appeared in the
governing equations by the inclusion of N (buoyancy ratio), k (thermophoresis
coefficient), Nt (temperature ratio) and Nc (concentration ratio).

In Figures 2-4, the velocity, concentration, and temperature profile are drawn for
Pr ¼ 0.72, Le ¼ 10, N ¼ 10, Nc ¼ 10, Nt ¼ 100, k ¼ 0.5, n ¼ m ¼ 0, n ¼ m ¼ 1/3 and
different mixed convection parameter 6 ¼ 0; 0:5; 1. It is obvious that as the mixed
convection parameter is increased; the velocity inside boundary layer is increased due
to favorable forced convection heat transfer effects and the temperature and
concentration gradients are decreased; this leads to higher heat and mass transfer
coefficients.

Figure 5 shows wall thermophoresis velocity values for Pr ¼ 0.72, Le ¼ 10, N ¼ 10,
Nc ¼ 10, k ¼ 0.5, n ¼ m ¼ 0, n ¼ m ¼ 1/3 and different values of temperature ratio
N t ¼ 10; 20; 50. It is clear that as the mixed convection parameter is increased the
thermophoresis velocity values are increased due to favorable forced convection heat
transfer effects, and it is also clear that the thermophoresis values are decreased when
temperature ratios are increased; this is due to small temperature differences between
vertical surface and free stream conditions.

Figure 6 shows the local Nusselt number values for Pr ¼ 0.72, Le ¼ 10, N ¼ 10,
Nc ¼ 10, k ¼ 0.5, n ¼ m ¼ 0, n ¼ m ¼ 1/3 and for different values of temperature

n ¼ 0.0 n ¼ 0.5 n ¼ 1.5

z
Hsieh et al.

(1993) Present study
Hsieh et al.

(1993) Present study
Hsieh et al.

(1993) Present study

0.0 0.4438 0.4429 0.7704 0.7710 1.0000 0.9980
0.1 0.4035 0.4062 0.6991 0.7001 0.9071 0.9065
0.2 0.3732 0.3711 0.6419 0.6421 0.8314 0.8307
0.3 0.3550 0.3548 0.6026 0.6032 0.7783 0.7779
0.4 0.3506 0.3510 0.5844 0.5839 0.7522 0.7514
0.5 0.3603 0.3611 0.5890 0.5888 0.7555 0.7561
0.6 0.3832 0.3816 0.6160 0.6158 0.7877 0.7881
0.7 0.4174 0.4170 0.6629 0.6631 0.8457 0.8460
0.8 0.4603 0.4610 0.7259 0.7263 0.9250 0.9248
0.9 0.5098 0.5089 0.8014 0.8020 1.0206 1.0189
1.0 0.5642 0.5439 0.8862 0.8860 1.1284 1.1295

Table I.
Values of 2u 0ðz; 0Þ at
selected values of n and
for N ¼ 0 compared to
those obtained by Hsieh
et al. (1993)
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Figure 2.
Dimensionless velocity

profiles for selected values
of mixed convection

parameter 6 and power
exponents m and n
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Figure 4.
Dimensionless
temperature profiles for
selected values of mixed
convection parameter 6
and power exponents
m and n

q 
(z

, h
)

z = 1

z = 0.5

z = 0

0.0 1.0 2.0 3.0 4.0

0.0

0.2

0.4

0.6

0.8

1.0

n = m = 0
n = m = 1/3

Pr = 0.72 
Le = 10 
N = 10
NC = 10
Nt = 100 
k = 0.5 

h

Figure 5.
Wall thermophoresis
velocity for selected values
of temperature ratio
parameter Nt and power
exponent m and n
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ratio N t ¼ 10; 20; 50. It is clear that as mixed convection parameter is increased the
Nusselt number values are increased, and the values of variable surface temperature of
n ¼ m ¼ 1/3 are higher than those of constant surface temperature of n ¼ m ¼ 0; this
is due to excessive heating of the vertical surface, which leads to higher heat transfer
rates. The effect of temperature ratio on local Nusselt numbers again to increase them;
this is due to favorable temperature gradient between vertical surfaces and the fluid
bounded it.

Figure 7 shows the wall thermophoresis velocities for Pr ¼ 0.72, Le ¼ 10, Nt ¼ 10,
Nc ¼ 10, n ¼ m ¼ 1/3 and for different values of buoyancy ratio N ¼ 0; 10 and
thermophoresis coefficient k ¼ 0:1; 0:2; 0:4; 0:6. The figure shows that as the
thermophoresis coefficient is increased the wall thermophoresis velocity is also
increased; this is due to favorable temperature gradients. Also the figure shows that as
the buoyancy parameter is increased the thermophoresis velocity is increased due to
concentration velocities contribution in immigration of fluid particles from the vertical
surfaces. It is also clear that as the mixed convection parameter is increased the effect
of buoyancy ratio on thermophoresis is decreased due to the absence of natural
convection heat transfer effects when 6 ¼ 1. It is also noticed that for the case of N ¼ 0
the thermophoresis coefficient had no effect on thermophoresis velocity.

Figure 8 shows the effect of thermophoresis coefficient on local Nusselt numbers.
Again the increasing of k ¼ 0:1; 0:2; 0:4; 0:6 for selected values of Pr ¼ 0.72, Le ¼ 10,
Nt ¼ 100, Nc ¼ 10, n ¼ m ¼ 1/3, N ¼ 10 increased local Nusselt numbers because of
favorable velocities near vertical surfaces which leads to higher heat transfer rates.
Figures 9 and 10 show the effect of buoyancy ratio N c ¼ 10; 20; 50 on both wall
thermophoresis velocity and local Nusselt number values for selected values of
Pr ¼ 0.72, Le ¼ 10, Nt ¼ 10, N ¼ 5.0, k ¼ 0.6, n ¼ m ¼ 0, n ¼ m ¼ 1/3. It is obvious

Figure 6.
Local Nusselt number
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of temperature ratio
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Figure 7.
Wall thermophoresis
velocity for selected values
of thermophoresis
parameter k and buoyancy
parameter N
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Figure 8.
Local Nusselt number
values for selected values
of thermophoresis
parameter k and buoyancy
parameter N
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Figure 9.
Wall thermophoresis

velocity for selected values
of concentration ratio

parameter Nc and power
exponent m and n
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Figure 10.
Local Nusselt numbers

values for selected values
of buoyancy ratio

parameter Nc and power
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that as the buoyancy ratio is increased the thermophoresis wall velocities and local
Nusselt numbers are increased; this is due to favorable slip velocities near vertical
surfaces. Again as the mixed convection parameter is increased towards the pure

Figure 11.
Wall thermophoresis
velocity for selected values
of buoyancy ratio
parameter Nc and power
exponent parameter n, m
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Figure 12.
Local Nusselt number
values for selected values
of concentration ratio
parameter Nc and power
exponent parameter n, m
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forced convection heat transfer limits the effect of buoyancy ratio is decreased; this is
due to absence of favorable buoyancy forces beside this limit.

Note that the variation of local Nusselt numbers and dimensionless thermophoresis
particle deposition velocity in Figures 6-9 against the mixed convection parameter 6
reaches a minimum value and then begins to increases toward pure forced convection
heat transfer limit; this does not mean that the local values of Nusselt numbers or
thermophoresis velocities for mixed convection regime are less than those of pure
forced convection or pure natural convection limits. For example, from Table I and for
6 ¼ 0.8, n ¼ 0, with Pex ¼ 100, Rax ¼ 100, the values of Nux=ðPe

1=2
x þ Ra

1=2
x Þ is 0.4610

and one finds the values of Nux ¼ 9:22 as compared with Nux ¼ 4:610 for pure forced
convection limit and Nux ¼ 4:610 for pure free convection limit.

Figures 11 and 12 show the effect of buoyancy ratio N c ¼ 10; 20; 50 on both wall
thermophoresis velocity and local Nusselt number values for selected values of
Pr ¼ 0.72, Le ¼ 10, Nt ¼ 10, N ¼ 5.0, for the pure forced and natural convection limits
and for different heating and mass exponents n, m. It is obvious that as the buoyancy
ratio is increased the thermophoresis wall velocities and local Nusselt numbers are
increased; this is due again to favorable slip velocities near vertical surfaces. Again as
the power exponents for both heating and mass boundary conditions are increased,
both the wall thermophoresis and local Nusselt numbers are enhanced on both limits of
pure forced convection and pure natural convection; this is due to excessive heating
and excessive concentration difference effects.

5. Conclusions
Numerical solutions for heat and mass transfer by steady, laminar boundary layer of a
Newtonian fluid over a vertical flat plate embedded in a porous medium in the presence
of thermophoresis particle deposition effect were studied. Based on the obtained
graphical results, the following conclusions were deduced:

. The thermophoresis and local Nusselt number values are enhanced when
temperature difference between surface and free stream conditions are increased;
this is due to favorable buoyancy forces.

. When the thermophoresis constant is increased, both thermophoresis velocity
and local Nusselt numbers are increased; this is due to favorable velocity
mechanism.

. The thermophoresis and local Nusselt number values are decreased when
concentration difference between surface and free stream conditions are
increased.

. The effect of increasing power heating and mass index n, m is to enhance
thermophoresis wall velocity and local Nusselt numbers; this is due to excessive
heating and temperature differences.

. When the buoyancy ratio parameter is decreased towards the zero, the
thermophoresis parameter had no effect on both wall thermophoresis and local
Nusselt numbers; this is due to small temperature differences between vertical
surfaces and free stream condition. Even for large concentration differences the
thermophoresis parameter had no effect on both the wall thermophoresis
velocity and heat transfer rates for small temperature differences.
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particle

deposition
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. The thermophoresis effects on the mixed convection heat transfer problem is
more pronounced near the pure natural convection heat transfer limit more than
the forced convection heat transfer limit, this is because the thermophoresis
mechanism is purely temperature gradient or buoyancy dependent. This leads to
higher values of Nusselt numbers of pure natural convection heat transfer than
the corresponding values of pure forced convection heat transfer limit.
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